Development of Radiological Inventory Distributions for the West Valley Probabilistic Performance Assessment (PPA) Model

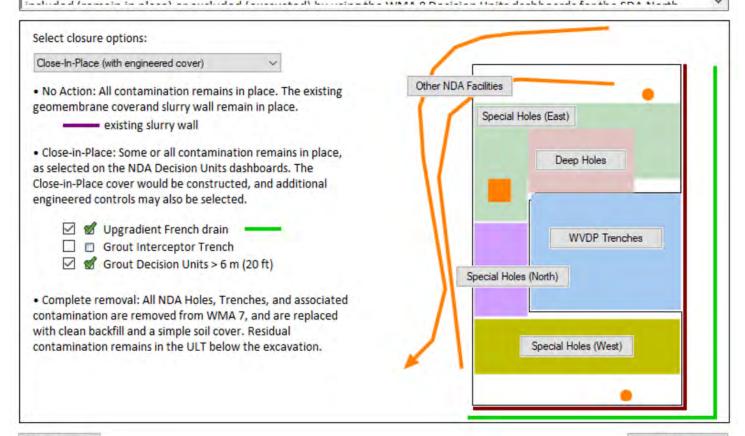
These slides present work in progress. The material and content are subject to change.

Purpose

- Define inventory to be used as input to the West Valley PPA Model from existing data sources
 - Radiological and chemical wastes, other contamination, and residuals
- Structured parallel to the PPA Model
 - Waste Management Areas (12) each may have zero, one, or multiple Facilities; zero to many Decision Units per WMA
 - Facility (34) a modeling construct; each has its own contaminant transport and risk exposure calculations
 - Decision Unit (426) each Decision Unit (DU) needs to have an inventory assigned
 - Inventory is assigned at the WMA and/or Facility level for those having no DUs; additional residual inventory is assigned to each Facility

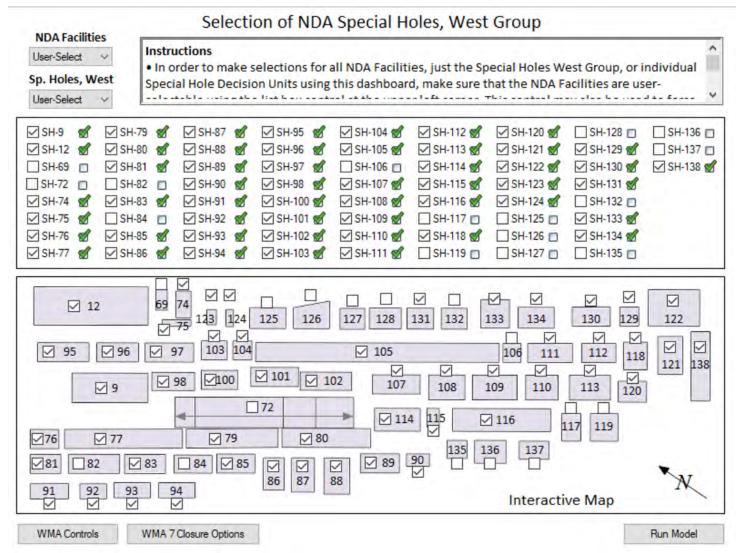
WMAs

WMA 11 and 12 not shown.


Facilities

Selection of WMA 7 Closure Options

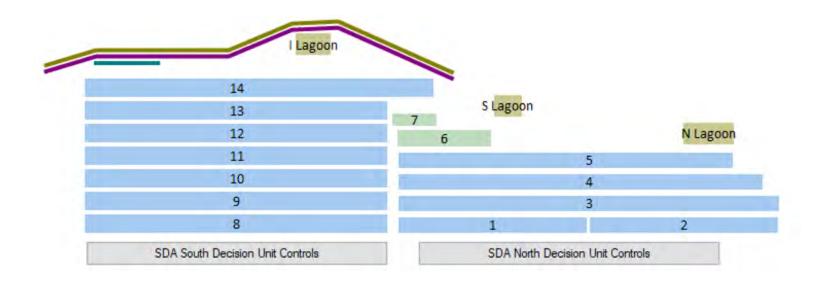
Instructions


WMA Controls

- · Select the closure option to be modeled using the drop-down box.
- For the Close-in-Place option, additional engineered controls may be selected, and individual Decision Units may be

Run Model

Decision Units


Distribution Development

- Probability distributions have been developed for DUs for the following categories
- SDA disposed waste (WMA 8)
- NDA disposed waste (WMA 7)
- Waste Tank Farm (WTF WMA 3)
- Residual Inventory (all other WMAs except 11 and 12)

SDA Disposed Waste – WMA 8

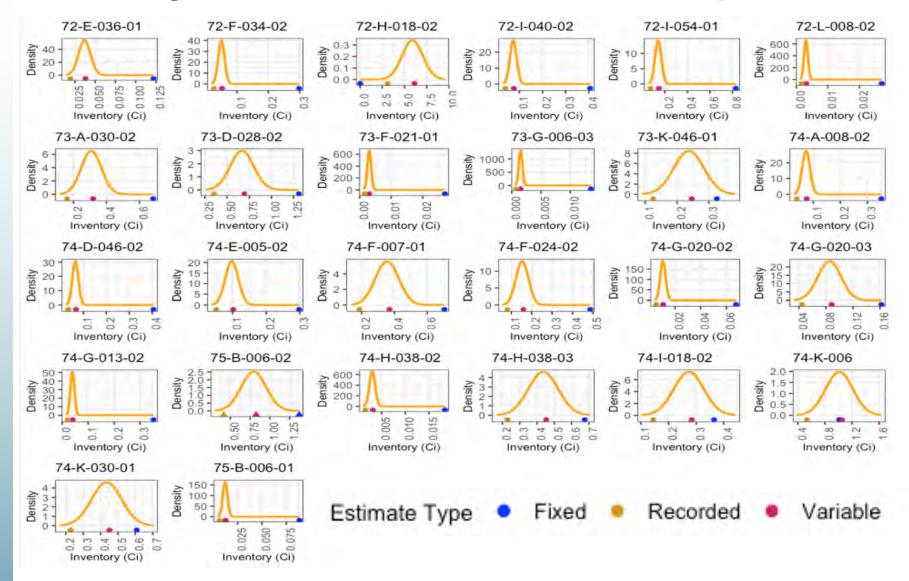
We developed a probability distribution for the mass of each radionuclide in each 50 foot trench section at the time of disposal.

Methods Overview

Activity of waste in each SDA shipment at time of disposal

- apply one of 33 waste profiles (URS 2002*)
- include add-in radionuclides

Radionuclide inventory of each SDA shipment


 sum radionuclide inventories over all shipments in each trench section

Radionuclide inventory in a trench section at time of disposal

*URS, 2002. SDA Radiological Characterization Report, prepared for West Valley Nuclear Services Company Inc., URS Corporation, Orchard Park NY, 2002

Activity Distributions for SDA Shipments

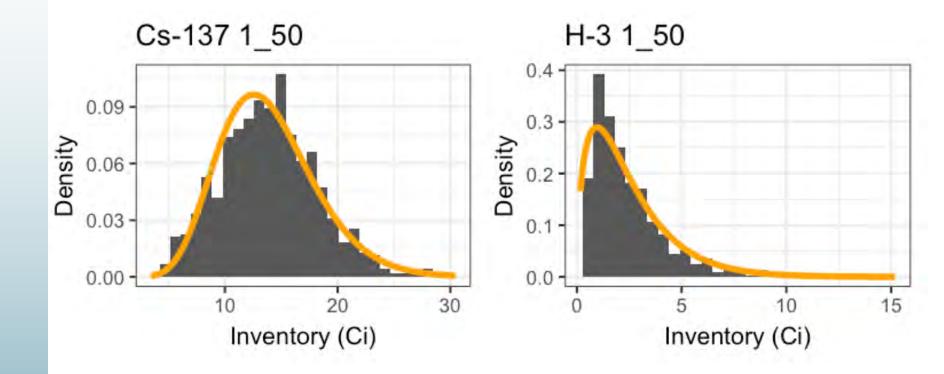
Radionuclide Fractions

Table 2-8.	Isoto	pe Produc	ction Was	te Profiles
------------	-------	-----------	-----------	-------------

		800	ondary Profi	lle	
	Large Tritlum	Small Tritlum	Reactor Targets	Reautor Trach	Sealed Sources
Type	Active	Active	Active	Active	Dummy
Density *	1.03	0.88	1.70	0.60	2.00
Nuclide		Cone	entration (CI	lm²)	1000
H-3	2.45E+02	3.58E+02	1.09E-02	1.51E-06	n/a
C-14	2.15E-01	0	1.17E-05	1.62E-09	n/a
9-35	1.06E+00	0	0	0	n/a
Cr-51	0	0	3.64E+00	0	n/a
Mn-54	0	0	2.63E+00	0	n/a
Fe-55	0	0	1.60E+01	0	n/a
Fe-59	0	0	5.05E-01	0	n/a
Co-58	0	0	6.06E+00	0	n/a
Co-60	0	0	0	5.63E-04	n/a
NI-63	0	0	2.46E-01	0	n/a
3r-89	0	0	1.97E+01	0	n/a
3r-90	0	0	2.35E+00	2.70E-04	nia
Y-91	0	0	3.11E+01	0	n/a
Zr-93	0	0	0	7.88E-04	n/a
Zr-95	0	0	3.08E+01	1.58E-03	n/a
Nb-95	0	0	5.54E+01	4.25E-03	n/a
Mo-99	0	0	0	4.17E-04	n/a
Tc-99	0	0	8.48E-05	1.18E-08	n/a
Ru-103	0	0	5.52E+00	1.19E-03	n/a
Ru-106	0	0	2.42E+00	0	n/a
4- 244-	100			the second terminal	100

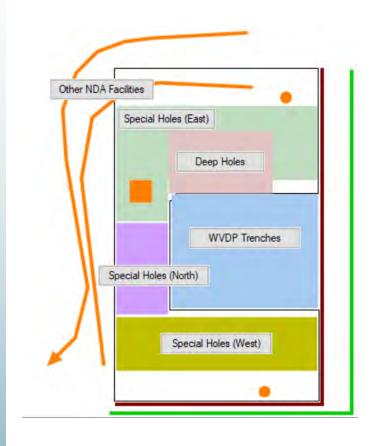
NA TOP					THE STATE OF
Ag-110m	0	0	0	6.03E-03	n/a
In-113m	0	0	0	7.12E-04	n/a
Sn-113	0	0	0	7.12E-04	n/a
Sb-124	0	0	0	7.38E-05	n/a
I-125	0	0	0	4.04E-02	n/a
1-129	0	0	7.04E-07	9.77E-11	n/a
Cs-135	0	0	8.48E-05	1.18E-08	n/a
Cs-137	0	0	1.54E+00	2.70E-04	n/a
Ba-140	0		0	3.42E-03	n/a
La-140	0	0	0	4.29E-03	n/a
Ce-141	0	0	7.44E+00	0	n/a
Ce-144	0	0	5.09E+01	0	n/a
Pm-147	0	0	8.70E+00	0	n/a
U-235	0	0	4.70E-04	3.00E-05	n/a
U-238	0	0	5.48E-06	1.67E-07	n/a
Np-237	0	0	1.03E-13	3.31E-17	n/a
Pu-238	0	0	3.81E-05	1.22E-08	n/a
Pu-239	0	0	1.07E-05	3.44E-09	n/a
Pu-241	0	0	1.37E-03	4.40E-07	n/a
Pu-242	0	0	1.85E-08	5.94E-12	n/a
Am-241	0	0	2.12E-06	6.80E-10	n/a
Am-243	0	0	2.43E-07	7.77E-11	n/a
Cm-242	0	0	2.27E-04	7.29E-08	n/a
Cm-243	0	0	5.57E-08	1.79E-11	n/a
Cm-244	0	0	3.20E-05	1.03E-08	n/a
Total	2.47E+02	3.58E+02	2.45E+02	6.50E-02	n/a

[&]quot; Units are gicm".


Example

SHIPMENT NO.	CUSTOMER	DATE RECD.	HAS REP.	CUBIC PEET		March /9 DATE BURIED	LOCATION BURLED	CONTACHER TYPE	CURIES FER LOAD	SAM, DECOX SPEC. HAKE
75-0-021	Hettimon Merckon + Dav. Conf.	3/10/25	1.8.	425	00	3/11/25	14-M-560'	concrete coult	4.596	Spec.
	Hitten Richar + Dev. Cafe	3/10/15	23.	425		1.	14-M- 560'	course boult	7.956	Land .
75-6- 623	Hittman Nuclean + Dur Got	3/10/15	e/3.	425	00	3/11/75	14-M- 560'	convert Vailt	4.936	Sper &
	Nettina Dules & Dw. Coop	3/11/15	23.	425	00	3/0/15	14-19- 560'	course Ventt	36.000	Sper land.
	Heltinen Muches & Dav Conf	3/11/15	62		-	1.11	14-M-550"	souvet Veult	3.600	Spec. Hand.
		3/4/75		425		1 /	14-14- 550'	Court Venle	4.956	Spe Kant
		3/11/25		467	_		14-M-535'	Lyles lefer at	,397	

SHIPNUM	ACCT	SOURCE	TRENCH D	IST_SECT	VOLUME	WP	DOSRAT_MR	REC_MCURIE
75-C-021	HITTMAN	Millstone Power Station	14	550	425	BWR	5	4596
75-C-022	HITTMAN	Millstone Power Station	1 4	550	425	BWR	3	4956
75-C-023	HITTMAN	Millstone Power Station	14	550	425	BWR	25	4956
75-C-024	HITTMAN	Millstone Power Station	74	550	425	BWR	5	3600
75-C-025	HITTMAN	Millstone Power Station	74	550	425	BWR	5	3600
75-C-026	HITTMAN	Millstone Power Station	14	550	425	BWR	10	4956
75-C-027	HITTMAN	Nine Mile Point	14	500	467.65	BWR	2000	7316



Ex: Trench 1, Segment 50-100

NDA Disposed Waste – WMA 7

We developed a probability distribution for the mass of each radionuclide in each deep hole, special hole, or WVDP Trench at the time of disposal.

NDA Waste Types

Category 2 Waste **Category 1 Waste** Irradiated fuel hulls **Debris** Irradiated metals from fuel Failed or discarded assemblies equipment **Filters** General Ion exchange and sludge Compact trash Soil Degraded extractant

Methods Overview

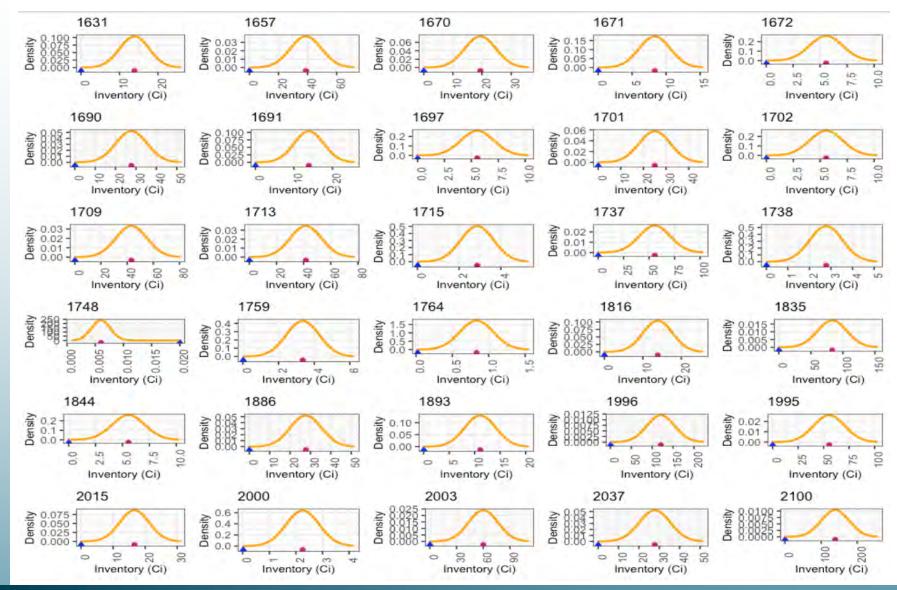
Activity of each NDA
Category 1 waste burial
at time of disposal

Apply a waste profile estimated for each reprocessing campaign (WVNS 1992*)

Radionuclide inventory of each NDA Category 1 waste burial

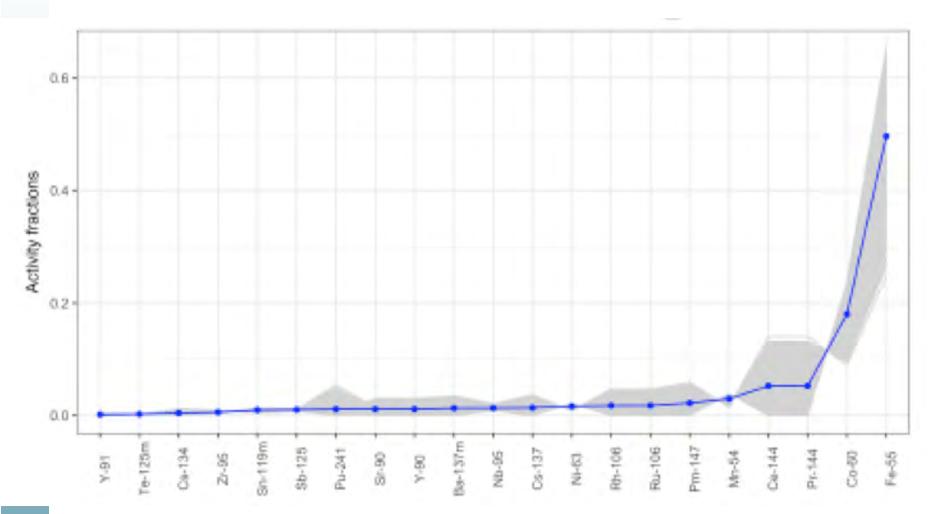
Activity of each NDA
Category 2 waste burial
at time of disposal

Apply a waste profile based on when/where the waste was generated (URS 2000**)


Radionuclide inventory of each NDA Category 2 waste burial

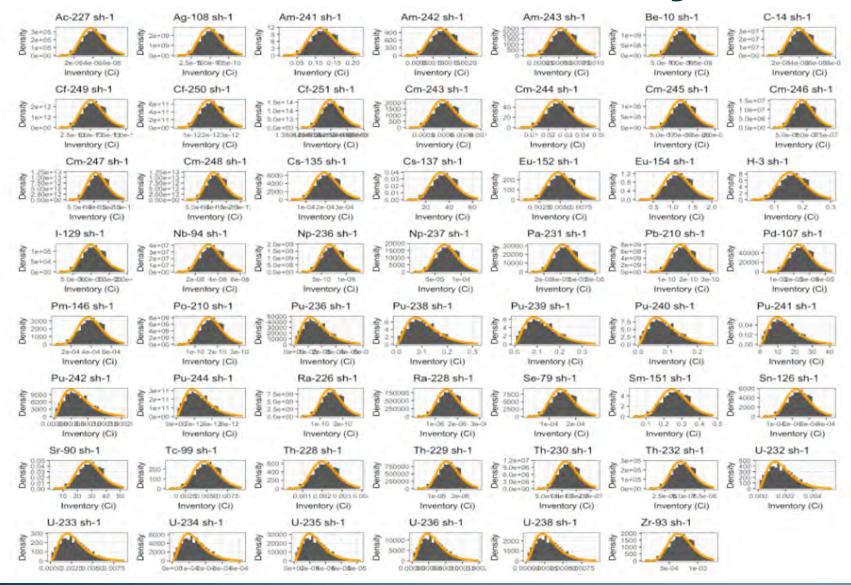
Sum rad inventories over all Category 1 and 2 waste burials in each DU

Radionuclide inventory in a deep hole, special hole, or WVDP trench at time of disposal



Activity Distribution by Burial Record

Radionuclide Composition


Ex: Cat 1 Waste

Vumber	Date Shipped	Maximum Radiation Reading B/HR	Burial Location	Drum Number Hulls Only	Cubic Feet Per Ship.	Type Activity	Contents	Steel	Wood	Concrete	Cardboari
8.51 H	7-26-68	1500,0	. 4-6		12 0	3 Co-60	1 Hulls	18.000			
8-02 H	7-29-68	1500.0	4-6		12.0	3 Co-60	Hells	18.000			
8-6312	7-26-68	3.0	4-6		1500	MFP	Filter		.024		
8-044	7-30-68	100.0	4-6		120	3 Co-60	Hulls	12.000			
- 575H	7-31-68	1500.0	4-6		120	3 Ca-60	Hulls	18,000			
F.0064	8-1-68	100.0	4-6		12 0	3 Co-60	ana + OMC White				
8-0074	8-2-68	1500.0	4-6		12 0	3 Co-60	Hulls	18.000			
8-58H	8-5-68	1500.0	4-6		120	1	Hulls	18.000			
3-009H		1500.0	4-6		120	3 Co-60	Hells	18.000		7	

ID	7	SHIPNO -7	BURIAL DT ITEMS	- HOLE	= TYPE	▼ VOLUMI → REC	DO =	REC_CU WASTE_CAT1	CampW =
	1265	68-08-001h	7/26/68	1 4-6	d	4.01	1500	6 hull	10
	1266	68-08-001h	7/26/68	1 4-6	d	4.01	1500	6 hull	10
	1267	68-08-001h	7/26/68	1 4-6	d	4.01	1500	6 hull	10
	1269	68-08-002h	7/29/68	1 4-6	d	4.01	1500	6 hull	10
	1270	68-08-002h	7/29/68	1 4-6	d	4.01	1500	6 hull	10
	1271	68-08-002h	7/29/68	1 4-6	d	4.01	1500	6 hull	10

SH-1 Total Inventory

WMA 3 – Waste Tank Farm

Selection of WMA 3 Closure Options

Instructions

WMA Controls

- Select the closure option to be modeled using the drop-down box.
- For the Close-in-Place option, additional engineered controls may be selected, and individual Decision Units may be

Select closure options: Waste Management Area 3 Close-In-Place (with engineered cover) Waste Tank Farm Closure Options . No Action: All contamination remains in place. No cover is constructed, and no additional engineered controls are added. Close-in-Place: Some or all contamination remains in place, as selected on the WMA 3 Decision Units 8D-40 **PVSB** dashboard. The Close-in-Place cover would be constructed, and additional engineered controls may 8D-1 also be selected. &STS 8D-2 & HUWTT Select WMA 3 Decision Units Ring **Upgradient** barrier wall Grout all HLW tanks . Complete removal: All contamination and structures are removed from WMA 3, and are replaced with clean backfill and a simple soil cover. Residual contamination remains in the ULT below the excavation.

Run Model

WTF Historical Data

- Historical data were used from:
 - ECS 2016: Task 1.1: Technical Memorandum— Comparison of Previous Inventories, Revision 1
 - WVNS 2005: West Valley Demonstration Project, Residual Radionuclide Inventory Estimate for the Waste Tank Farm, Supplemental Report
 - WVDP 2012: Tank 8D-4 Characterization Information Generation Evolution—2012, WVDP-554
 - WVES 2008. Transmittal of Estimated Radiological and RCRA Hazardous Inventory in Tanks 8D-3 and 8D-4

WTF Decision Units

- Probability distributions are developed for radionuclide activity (Ci) in the following 6 DUs:
 - Tank 8D-1 Supernatant Treatment System (STS)
 - Tank 8D-1 non-STS
 - Tank 8D-2 excluding the Ring
 - Tank 8D-2 Ring
 - Tank 8D-3
 - Tank 8D-4

Tank 8D-1 – Best Estimate (WVDP 2005)

Table 37: Tank 8D-1 Estimated Residual Activity (Ci) — Best Estimate Case

Radionuclide	Liquid	Sludge	Zeolite	Fixed	STS IX	STS Equip	Total
C-14	1.7e-03	4.0e-03	7 5 7 5 1	1.2e-04	1777	7.6e-03	1.3e-02
Sr-90	1.3e+01	4.1e+01	2.3e+02	1.8e+02	1.2e+02	5.8e+01	6.5e+02
Tc-99	7.3e-01	4.7e-01		2.5e-02		7.32 +00	-4.5e+00
I-129	9.2e-04	5.9e-04		3.2e-05		4.1e-03	5.7e-03
Cs-137	5.1e+02	4.5e+02	1.5e+05	4.1e+03	7.8e+04	2.3e+03	2.3e+05
U-232	2.3e-02	1.7e-02		9.5e-02	01	1.0e-01	7.4e-01
U-233	1.0e-02	7.2e-03		4.2e-02		4.6e-02	1.1e-01
U-234	3.9e-03	2.8e-03		1.6e-02		1.8e-02	4.0e-02
U-235	1.2e-04	9.9e-05		5.2e-04		5.4e-04	1.5e-03
U-238	1.1e-03	8.8e-04		4.7e-03		4.8e-03	1.1e-02
Np-237	1.1e-03	1.2e-03		2.9e-03	\sim	5.0e-03	1.Je-02
Pu-238	2.4e-02	8.6e-02	3.1e-01	9.9e-01	1.6e-01	1.1e-01	1.5e+00
Pu-239	4.2e-03	2.2e-02	8.6e-02	2.7e-01	4.5e-02	15e-02	4.4e-01
Pu-240	3.0e-03	1.6e-02	6.1e-02	1.9e-01	3.2s-02	1.3 e-02	3.2e-01
Pu-241	1.2e-01	5.0e-01	2.7e+00	7.8e+00	40+00	5.5e-01	1.2e+01
Am-241	1.2e-03	8.2e-02		2.3e-02		5.4e-03	1.1e-01
Cm-243	3.3e-06	2.3e-04		4.9e-05		1.5e-05	2.9e-04
Cm-244	1.5e-04	1.0e-02		2.2e-03		6.8e-04	1.3e-02

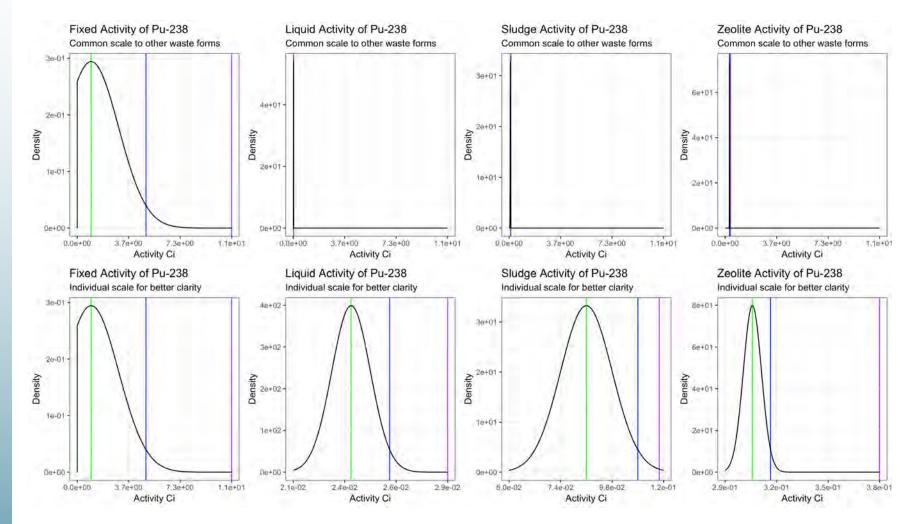
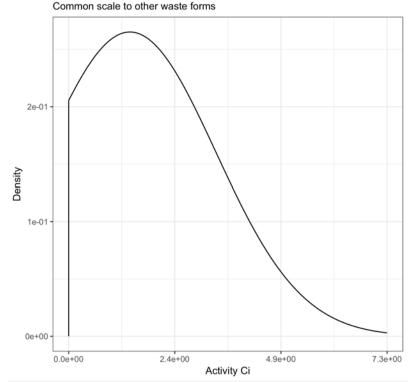

Tank 8D-1 – Conservative Case (WVDP 2005)

Table 38: Tank 8D-1 Estimated Residual Activity (Ci) — Conservative Case

Radionuclide	Liquid	Sludge	Zeolite	Fixed	STS IX	STS Equip	Total
C-14	2.6e-03	5.2e-03		1.2e-03		1.4e-02	2.0e-02
Sr-90	1.3e+01	5.8e+01	2.4e+02	1.8e+03	1.5e+02	7.1e+01	2.3e+03
Tc-99	7.5e-01	5.4e-01		2.1e-01	S	4/19+00	5.4e+00
I-129	9.5e-04	6.8e-04		2.6e-04		5.2e-03	6.8e-03
Cs-137	5.2e+02	4.6e+02	1.5e+05	5.5e+03	9.4e+04	2.8e+03	2.5e+05
U-232	2.3e-02	1.7e-02		4.5e-01		32-01	6.0e-01
U-233	1.0e-02	7.2e-03	10	2.0e-01	,	5.7e-02	2.6e-01
U-234	4.0e-03	2.8e-03		7.7e-02		2.2e-02	1.0e-01
U-235	1.2e-04	1.2e-04		2.6e-03		6-8e-04	3.4e-03
U-238	1.1e-03	1.1e-03		2.4e-02		6.16-03	3.1e-02
Np-237	1.2e-03	1.4e-03		1.5e-02		6 Ag-03	2.3e-02
Pu-238	2.6e-02	1.1e-01	3.2e-01	4.9e+00	1.9e-01	1.4e-01	5.6e+00
Pu-239	4.7e-03	3.1e-02	8.8e-02	1.3e+00	5.4e-02	25e-02	1.5e+00
Pu-240	3.3e-03	2.2e-02	6.3e-02	9.5e-01	3.86-02	1.86-02	1.1e+00
Pu-241	1.3e-01	6.5e-01	2.7e+00	3.8e+01	170-00	7.25-01	4e+01
Am-241	1.4e-03	1.3e-01		2.9e-01		7.8e-03	3.8e-01
Cm-243	4.1e-06	4.4e-04		8.4e-04		2.3e-05	1.1e-03
Cm-244	1.9e-04	2.0e-02		3.8e-02		1.0e-03	5.0e-02

Distributions of Pu-238 in Tank 8D-1 non-STS



Distribution of Total Pu-238 in Tank 8D-1 non-STS

Total Activity of Pu-238

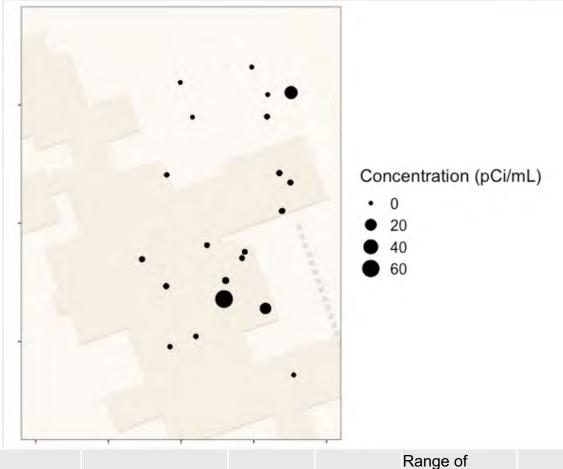
Common scale to other waste forms

Percentile	Ci
75 th	2.7×10^{0}
90 th	3.9×10^{0}
95 th	4.7×10^{0}
99 th	6.0×10^{0}
99.9 th	$7.5^b imes 10^0$

Truncated N(Mean = $1.41 \times 10^{\circ}$, SE = $1.97 \times 10^{\circ}$)

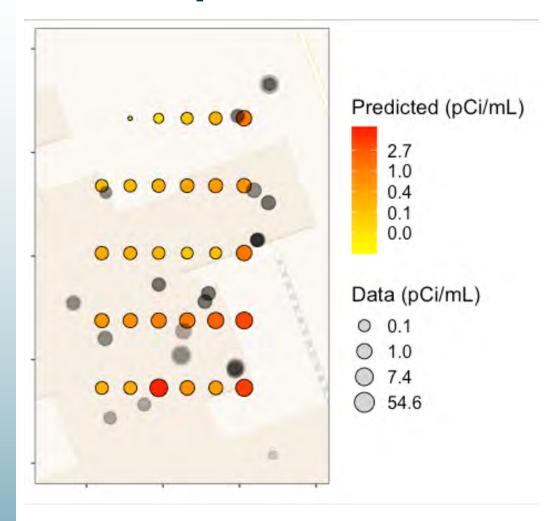
Residual Inventory

WMA 11 and 12 not shown.

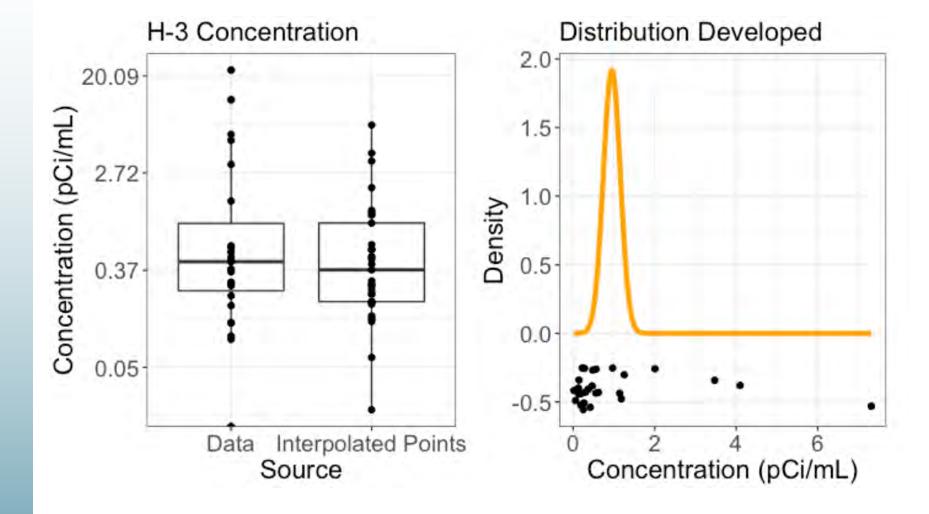


Residual Inventory Distribution Development

- 1. Subset data into DUs, and depth intervals used in the PPA model (e.g., different stratigraphic units)
- 2. Examine the data available for each radionuclide in each area, and choose the matrix (soil or groundwater) with the most data
- 3. Create a grid of points across the area of interest
- 4. Use spatial statistical methods to estimate values at each spatial location in the grid
- 5. Develop a distribution of the concentration across the interpolated points at the appropriate spatial scale


Example: Tritium Data

Matrix	Total Measurements	Locations	Years	Range of Values	Units
Groundwater	62		1994, 1998	0 - 64.48	pCi/mL
Soil	20	6	1998	0.361 - 43.4	pCi/g


Example: Tritium Predicted Values

High predicted values should occur around higher measured concentrations

Example: Tritium Distribution

Conclusion

- 1. Existing inventory estimates have been used as the basis for developing distributions
- 2. Distributions capture uncertainty for application in probabilistic performance assessment model
- 3. Inventory distributions have been developed for all 426 Decision Units, with up to 66 radionuclides in each
- 4. Spatial statistics have been used for residual inventory distribution development

